

# Modulhandbuch

# Unterrichtsfach Physik für Lehramt an Grundschulen (LPO-UA 2012)

# Lehramt

Wintersemester 2017/2018

Modulhandbuch für das Studium von Physik als Unterrichtsfach für das Lehramt an Grundschulen

# Übersicht nach Modulgruppen

| 1) | Fachdidaktik Physik für das Lehramt an Grundschulen (LPO-UA 2012) Enthält die Module für die Fachdidaktik im Lehramtsstudiengang Unterrichtsfach Physik an Grundschulen gemäß LPO-UA 2012      |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | DNW-7053 (= GsPhy-01-DID): Fachdidaktik Physik (Grundschule) (7 ECTS/LP, Pflicht) *                                                                                                            |
|    | DNW-7061 (= GsPhy-12-DID): Angewandte Physikdidaktik für Grundschulen (UF) (8 ECTS/LP, Pflicht) *6                                                                                             |
| 2) | Fachwissenschaft Physik für das Lehramt an Grundschulen (LPO-UA 2012) Enthält alle Module für das Lehramtsstudium Physik als Unterrichtsfach an Grundschulen im fachwissenschaftlichen Bereich |
|    | PHM-0001 (= GsHsPhy-01-EP): Physik I (Mechanik, Thermodynamik) (8 ECTS/LP, Pflicht) *9                                                                                                         |
|    | PHM-0143 (= GsHsPhy-03-Math): Mathematische Ergänzungen (8 ECTS/LP, Pflicht) *11                                                                                                               |
|    | PHM-0003 (= GsHsPhy-02-EP): Physik II (Elektrodynamik, Optik) (8 ECTS/LP, Pflicht)13                                                                                                           |
|    | PHM-0010 (= GsHsPhy-04-Prak): Physikalisches Anfängerpraktikum (12 Versuche) (8 ECTS/LP, Pflicht) *                                                                                            |
|    | PHM-0141 (= GsHsPhy-11-EP): Struktur der Materie I (8 ECTS/LP, Pflicht) *                                                                                                                      |
|    | PHM-0142 (= GsHsPhy-12-EP): Struktur der Materie II (8 ECTS/LP, Pflicht)19                                                                                                                     |
|    | DNW-7055 (= GsHsPhy-13-EP): Schulphysik für Lehramt an Mittelschulen (Unterrichtsfach) (= Schulphysik I + II) (6 ECTS/LP, Pflicht) *                                                           |

<sup>\* =</sup> Im aktuellen Semester wird mindestens eine Lehrveranstaltung für dieses Modul angeboten

# Modul DNW-7053 (= GsPhy-01-DID): Fachdidaktik Physik (Grundschule)

7 ECTS/LP

Version 1.0.0 (seit WS12/13)

Modulverantwortliche/r: Dr. Franz-Josef Heiszler

#### Inhalte:

Begründung/Legitimation des Physikunterrichts, Bildungsziele des Fachs Physik, Kompetenzmodelle und Bildungsstandards;

Elementarisierung und didaktische Rekonstruktion physikalischer Inhalte

Methoden im Physikunterricht

Medien im Physikunterricht und deren lernfördernder Einsatz;

Evaluation:

Schülervorstellungen und typische Lernschwierigkeiten in den unterrichtsrelevanten Themengebieten der Physik und darauf basierende Unterrichtsansätze, Methoden zur Veränderung von Schülervorstellungen;

Erkenntnis- und Arbeitsmethoden der Fachwissenschaft Physik

#### Lernziele/Kompetenzen:

Kenntnis der Legitimation und der Bildungsziele des Fachs Physik;

Fähigkeit, die Möglichkeiten der Elementarisierung und Methoden des Physikunterrichts einzusetzen;

Übersicht über physikalische Lehr- und Arbeitsmittel;

Vertieftes qualitatives Verständnis für schulrelevante physikalische Inhaltsgebiete;

Verständnis für typische Schülervorstellungen und typische Lernschwierigkeiten;

Kenntnisse, durch welches Vorgehen Schülervorstellungen verändert werden können;

Einblick in alternative Unterrichtsansätze bei ausgewählten Inhaltsbereichen;

Bereitschaft zur Anwendung von Erkenntnismethoden der Physik

#### Bemerkung:

Die Lehrveranstaltungen finden in verschiedenen Semestern im jährlichen Turnus statt.

# Arbeitsaufwand:

Gesamt: 210 Std.

| Voraussetzungen:<br>keine                         |                               | ECTS/LP-Bedingungen: Bestehen der Modulprüfung |
|---------------------------------------------------|-------------------------------|------------------------------------------------|
| Angebotshäufigkeit: jährlich siehe<br>Bemerkungen | Empfohlenes Fachsemester: 3.  | Minimale Dauer des Moduls:<br>2 Semester       |
| <b>sws</b> : 7                                    | Wiederholbarkeit:<br>beliebig |                                                |

#### Modulteile

Modulteil: Allgemeine Fachdidaktik Physik

**Lehrformen:** Vorlesung **Sprache:** Deutsch

Angebotshäufigkeit: jedes Wintersemester

**SWS**: 3

# Lernziele:

Kenntnis der Legitimation und der Bildungsziele des Fachs Physik;

Übersicht über physikalische Lehr- und Arbeitsmittel;

Verständnis für typische Schülervorstellungen und typische Lernschwierigkeiten;

Kenntnisse, durch welches Vorgehen Schülervorstellungen verändert werden können;

Fähigkeit, die Möglichkeiten der Elementarisierung und Methoden des Physikunterrichts einzusetzen;

Bereitschaft zur Anwendung von Erkenntnismethoden der Physik

#### Inhalte:

Begründung/Legitimation des Physikunterrichts, Bildungsziele des Fachs Physik, Kompetenzmodelle und Bildungsstandards;

Elementarisierung und didaktische Rekonstruktion physikalischer Inhalte;

Methoden im Physikunterricht;

Medien im Physikunterricht und deren lernfördernder Einsatz;

Evaluation

#### Literatur:

Martin Hopf, Horst Schecker, Hartmut Wiesner: Physikdidaktik kompakt, Aulis-Verlag, ISBN 978-3-7614-2784-2 Kircher, Girwidz, Häußler: Physikdidaktik. Theorie und Praxis, Springer-Verlag, ISBN 978-3642016011 Bleichroth, Dahncke, Jung, Kuhn, Merzyn, Weltner: Fachdidaktik Physik, Aulis-Verlag, 1999, ISBN 3-7614-2079-X Helmut Mikelskis (Hrsg.): Physik-Didaktik, Cornelsen Scriptor, 2006, ISBN 978-3-589-22148-6 Silke Mikelskis-Seifert, Thorid Rabe (Hrsg.): Physik Methodik, Cornelsen Scriptor, ISBN 978-3-589-22377-0

#### Zugeordnete Lehrveranstaltungen:

#### Allgemeine Fachdidaktik Physik (Vorlesung)

Modulteil: Fächerübergreifender Unterricht in der Grundschule

Sprache: Deutsch

Angebotshäufigkeit: unregelmäßig (i. d. R. im SoSe)

**SWS**: 2

# Lernziele:

Die Studierenden sind in der Lage

- aus Alltagsphänomenen naturwissenschaftliche Fragestellungen herauszuarbeiten
- auch außerhalb des HSU-Unterrichts naturwissenschaftliche Themen zu erkennen und zu nutzen
- Schlüsselgualifikationen für naturwissenschaftliches Arbeiten bei den Lernenden zu erkennen und zu entwickeln

#### Inhalte:

Alltagsphänomene als Grundlage naturwissenschaftlicher Erkenntnis;

Sachrechnen und naturwissenschaftliches Arbeiten;

Sprachlehre und Fähigkeit zur kritischen Beobachtung;

#### Literatur:

siehe Unterlagen zur Lehrveranstaltung

Modulteil: Didaktikseminar Fachdidaktik Physik

Sprache: Deutsch

Angebotshäufigkeit: jedes Semester siehe Bemerkungen

**SWS**: 2

#### Lernziele:

Vertiefte Kenntnisse im gewählten Inhaltsbereich;

Fähigkeit Physikunterricht unter verschiedenen Aspekten kritisch zu sehen sowie unterschiedliche

Vorgehensweisen diskutieren zu können

# Inhalte:

Ausgewählte Inhalte der Veranstaltung "Allgemeine Fachdidaktik Physik" werden beispielhaft vertieft und Themen der aktuellen fachdidaktischen Forschung aufgegriffen.

Eine Lehrveranstaltung aus dem jeweiligen Angebot ist zu wählen

#### Literatur:

entsprechend der jeweiligen Lehrveranstaltung

# Zugeordnete Lehrveranstaltungen:

# Alternative Lehr- und Lernkonzepte (Seminar)

Besprechung alternativer Konzepte naturwissenschaftlichen Unterrichtens z.B. Montessori, Waldorf,

#### Elementarisierung fachwissenschaftlicher Inhalte (Seminar)

Dieses Seminar wird nur als "Überlaufveranstaltung" geführt. D.h., es wird nur dann noch eingerichtet, wenn die übrigen Seminare ("Entwicklung und Durchführung eines Schülerlabors", "Schülervorstellungen..." und "MINTegration") überfüllt sind.

#### Entwicklung und Durchführung eines Schülerlabors (Seminar)

In das Seminar eingebettet ist eine Förderveranstaltung der Schülerakademie Schwaben zur Förderung besonders naturwissenschaftlich interessierter Schüler\*innen. Als Programm ist eine Einführung in die Nanotechnologie geplant; etwas zeitliche Flexibilität ist notwendig.

# **MINTegration** (Seminar)

Ein Konzept für naturwissenschaftlichen Unterricht mit Übergangsklassen wird vorgestellt. Im Seminar sollen Erweiterungen/Ergänzungen dieses Unterrichtskonzepts erarbeitet werden.

Schülervorstellungen - Bremser oder Förderer für das Lernen in Physik und Sachunterricht? (Seminar)
Erarbeitung und Erprobung von Methoden, mit denen Lehrkräfte im Unterricht heterogene Präkonzepte der
Schüler\*innen in Erfahrung bringen und adaptiv in die Unterrichtsgestaltung einbinden können. Aktive Mitarbeit
an der physikdidaktischen Forschung. Praxisteil mit eingeladenen Schulklassen (Termine werden im Seminar
ausgemacht).

#### **Prüfung**

#### Modulgesamtprüfung

Mündliche Prüfung / Prüfungsdauer: 20 Minuten

# Prüfungsvorleistungen:

Erarbeitung der Kompetenzen des Gesamtmoduls

#### Beschreibung:

Inhalte und Kompetenzen aus allgemeiner Physikdidaktik, spezieller Physikdidaktik des gewählten Lehramts und einem Didaktikseminar

Die Anmeldung zur Prüfung bei Studis muss in dem Semester erfolgen, in dem die Modulgesamtprüfung abgelegt wird.

# Modul DNW-7061 (= GsPhy-12-DID): Angewandte Physikdidaktik für Grundschulen (UF)

8 ECTS/LP

Version 1.0.0 (seit WS12/13)

Modulverantwortliche/r: Dr. Franz-Josef Heiszler

#### Inhalte:

Experimente zur Veranschaulichung physikalischer Sachverhalte im Grundschulunterricht

Fächerübergreifende Unterrichtselemente an der Grundschule

Fachstrukturelle Kenntnisse im Bereich der Naturwissenschaften

# Lernziele/Kompetenzen:

Die Studierenden erwerben

- Kenntnisse von altersangemessenen physikalischen Fragestellungen in HSU
- Fähigkeiten zur experimentellen Aufbereitung von Problemstellungen des HSU
- Einsichten in Ansätze naturwissenschaftlichen Arbeitens im Rahmen von HSU

#### Arbeitsaufwand:

Gesamt: 240 Std.

| Voraussetzungen: Die vorherige Teilnahme am Modul DNW-7053 ist erwünscht |                               | ECTS/LP-Bedingungen: Bestehen der Modulprüfung |
|--------------------------------------------------------------------------|-------------------------------|------------------------------------------------|
| Angebotshäufigkeit: nach Bedarf                                          | Empfohlenes Fachsemester: 5.  | Minimale Dauer des Moduls:<br>2 Semester       |
| <b>sws</b> : 6                                                           | Wiederholbarkeit:<br>beliebig |                                                |

#### Modulteile

Modulteil: Experimente im Sachunterricht der Grundschule

**Lehrformen:** Seminar **Sprache:** Deutsch

Angebotshäufigkeit: jedes Semester

**SWS**: 2

#### Lernziele:

Die Studierenden

- erkennen die physikalischen Hintergründe im HSU-Unterricht
- sind befähigt zur altersgemäßen experimentellen Umsetzung von Experimenten
- wissen um die Möglichkeiten der Hinführung zu wissenschaftlichem Arbeiten

# Inhalte:

Themen:

Sinneswahrnehmung und Messen

Akustik

Optik und Sehen

Magnetismus

Elektrizität, Strom

Teilchenmodell

Wasser, Lösung, Aggregatzustände

Luft

#### Literatur:

wird in der Lehrveranstaltung bekannt gegeben

# Zugeordnete Lehrveranstaltungen:

Experimente im Sachunterricht der Grundschule

endgültige Platzvergabe und Zeitfestlegung in der Vorbesprechung am 17.10.17 um 14.00 Uhr in Raum 124 Physikgebäude Nord

Modulteil: fachliche Ergänzung

Sprache: Deutsch

**SWS**: 2

#### Lernziele:

Verbreiterung der fachlichen Kompetenz in Naturwissenschaften

Fähigkeit, HSU auf der Basis naturwissenschaftlicher Grundlagen zu unterrichten

#### Inhalte:

siehe jeweilige Lehrveranstaltung; HSU deckt viele Bereiche in Naturwissenschaften ab; mit diesem Teilmodul soll die fachliche Basis in Biologie, Chemie oder Geografie verbreitert werden.

#### Literatur:

siehe jeweilige Lehrveranstaltung

#### Zugeordnete Lehrveranstaltungen:

#### Einfache Schülerexperimente für Grund- und Hauptschule (Praktikum)

#### Übungen im Demonstrieren und Vortragen (Übung)

praktische Übungen zur Unterrichtsgestaltung

Modulteil: Ergänzendes didaktisches Seminar

Sprache: Deutsch

Angebotshäufigkeit: jedes Semester

**SWS**: 2

#### Lernziele:

Vertiefte Kenntnisse im gewählten Inhaltsbereich

Fähigkeit, Physikunterricht unter verschiedenen Aspekten kritisch zu sehen, sowie unterschiedliche Vorgehensweisen diskutieren zu können.

#### Inhalte:

Ausgewählte Inhalte der Veranstaltung "Allgemeine Fachdidaktik Physik" werden beispielhaft vertieft und Themen der aktuellen fachdidaktischen Forschung aufgegriffen.

Es ist eine Lehrveranstaltung aus dem nachfolgenden Angebot zu wählen: Elementarisierung fachwissenschaftlicher Inhalte; alternative Formen naturwissenschaftlichen Unterrichtens

#### Literatur:

je nach Lehrveranstaltung

# **Zugeordnete Lehrveranstaltungen:**

#### Alternative Lehr- und Lernkonzepte (Seminar)

Besprechung alternativer Konzepte naturwissenschaftlichen Unterrichtens z.B. Montessori, Waldorf,

# Elementarisierung fachwissenschaftlicher Inhalte (Seminar)

Dieses Seminar wird nur als "Überlaufveranstaltung" geführt. D.h., es wird nur dann noch eingerichtet, wenn die übrigen Seminare ("Entwicklung und Durchführung eines Schülerlabors", "Schülervorstellungen..." und "MINTegration") überfüllt sind.

# Schülervorstellungen - Bremser oder Förderer für das Lernen in Physik und Sachunterricht? (Seminar)

Erarbeitung und Erprobung von Methoden, mit denen Lehrkräfte im Unterricht heterogene Präkonzepte der Schüler\*innen in Erfahrung bringen und adaptiv in die Unterrichtsgestaltung einbinden können. Aktive Mitarbeit an der physikdidaktischen Forschung. Praxisteil mit eingeladenen Schulklassen (Termine werden im Seminar ausgemacht).

# Prüfung

# Modulgesamtprüfung

Portfolioprüfung, unbenotet

# Prüfungsvorleistungen:

Unterrichtsmitschriften aus den Teilmodulen

# Beschreibung:

Für eine erfolgreiche Modulgesamtprüfung sind die Portfolios der drei Teilmodule dem Modulbeauftragten vorzulegen

Die Anmeldung zur Prüfung bei Studis muss in dem Semester erfolgen, in dem die Modulgesamtprüfung abgelegt wird.

# Modul PHM-0001 (= GsHsPhy-01-EP): Physik I (Mechanik, Thermodynamik)

8 ECTS/LP

Version 1.0.0 (seit WS09/10)

Modulverantwortliche/r: Prof. Dr. Achim Wixforth

#### Inhalte:

- Mechanik von Massenpunkten und Systeme von Massenpunkten
- · Mechanik und Dynamik ausgedehnter starrer Körper
- · Relativistische Mechanik
- · Mechanische Schwingungen und Wellen
- · Mechanik und Dynamik von Gasen und Flüssigkeiten
- Wärmelehre

#### Lernziele/Kompetenzen:

- Die Studierende wissen die grundlegenden Begriffe, Konzepte und Phänomene der klassischen Mechanik, von Schwingungen und Wellen in mechanischen Systemen und der Thermodynamik (Wärmelehre und statistische Deutung),
- besitzen Fertigkeiten in einfacher Modellbildung, der Formulierung mathematisch-physikalischer Ansätze und können diese auf Aufgabenstellungen in den genannten Bereichen anwenden und
- besitzen Kompetenzen in der selbständigen Bearbeitung von Problemstellungen aus den genannten Themenbereichen. Sie sind in der Lage, Genauigkeiten von Beobachtung und Analyse einschätzen zu können.
- Integrierter Erwerb von Schlüsselqualifikationen: analytisch-methodische Kompetenz, wissenschaftliches Denken, Abwägen von Lösungsansätzen, Training des logischen Denkens, Teamfähigkeit, Erlernen des eigenständigen Arbeitens mit (englischsprachiger) Fachliteratur

#### Arbeitsaufwand:

Gesamt: 240 Std.

90 Std. Vor- und Nachbereitung des Stoffes Übung/Fallstudien (Selbststudium)

30 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium)

30 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

90 Std. Vorlesung und Übung (Präsenzstudium)

| Voraussetzungen:<br>keine                   |                                                |                                       |
|---------------------------------------------|------------------------------------------------|---------------------------------------|
| Angebotshäufigkeit: jedes<br>Wintersemester | Empfohlenes Fachsemester: 1.                   | Minimale Dauer des Moduls: 1 Semester |
| <b>sws</b> : 6                              | Wiederholbarkeit:<br>siehe PO des Studiengangs |                                       |

#### Modulteile

Modulteil: Physik I (Mechanik, Thermodynamik)

**Lehrformen:** Vorlesung **Sprache:** Deutsch

SWS: 4

#### Lernziele:

siehe Modulbeschreibung

#### Inhalte:

siehe Modulbeschreibung

#### Literatur:

· Alonso-Finn: Fundamental University Physics I, III

Demtröder: ExperimentalphysikHalliday, Resnick & Walker: Physik

Tipler & Mosca: PhysikMeschede: Gerthsen Physik

# Zugeordnete Lehrveranstaltungen:

Physik I (Mechanik, Thermodynamik) (Vorlesung)

Modulteil: Übung zu Physik I

**Lehrformen:** Übung **Sprache:** Deutsch

SWS: 2 Lernziele:

siehe Modulbeschreibung

**Zugeordnete Lehrveranstaltungen:** 

Übung zu Physik I (Übung)

# Prüfung

# Physik I (Mechanik, Thermodynamik)

Klausur / Prüfungsdauer: 150 Minuten

# Modul PHM-0143 (= GsHsPhy-03-Math): Mathematische Ergänzungen

8 ECTS/LP

Version 1.0.0 (seit WS09/10)

Modulverantwortliche/r: Prof. Dr. Thilo Kopp

#### Inhalte:

Dieses Modul ist als Begleitung zu den Modulen "Physik I" (PHM-0001, PHM-0002) und "Physik II" (PHM-0003, PHM-0004) konzipiert und behandelt die in diesen Modulen benötigten mathematischen Methoden.

Das Modul wird als Vorlesung mit integrierten Übungsphasen abgehalten, in denen der vorgestellte Stoff anhand von Beispielen eigenständig oder in Kleingruppen vertieft wird.

#### Lernziele/Kompetenzen:

Die Studierenden

- kennen die grundlegenden Konzepte der Mathematik, die zur Beschreibung physikalischer Phänomene und Prozesse erforderlich sind,
- praktizieren sie durch selbständige Arbeit im Eigenstudium und in den Übungsgruppen und
- besitzen die Kompetenz, elementare physikalische Problemstellungen in Form von Gleichungen zu formulieren, diese selbständig zu lösen und die Ergebnisse in Form von einfachen und allgemein verständlichen physikalischen Bildern zu interpretieren.

#### Arbeitsaufwand:

Gesamt: 240 Std.

80 Std. Vor- und Nachbereitung des Stoffes Übung/Fallstudien (Selbststudium)

50 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium)

20 Std. Übung (Präsenzstudium)

50 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

40 Std. Vorlesung (Präsenzstudium)

| Voraussetzungen:<br>keine    |                                                | ECTS/LP-Bedingungen:<br>Bestehen der Modulprüfung |
|------------------------------|------------------------------------------------|---------------------------------------------------|
| Angebotshäufigkeit: jährlich | Empfohlenes Fachsemester: 1.                   | Minimale Dauer des Moduls:<br>2 Semester          |
| <b>SWS</b> : 4               | Wiederholbarkeit:<br>siehe PO des Studiengangs |                                                   |

# Modulteile

Modulteil: Mathematische Ergänzungen I

Lehrformen: Vorlesung + Übung

Sprache: Deutsch

Angebotshäufigkeit: jedes Wintersemester

**SWS**: 2

#### Inhalte:

Dieser Modulteil stellt in erster Linie die mathematischen Methoden bereit, die in der Mechanik benötigt werden:

- · Vektorrechnung
- · Differentialrechnung
- Komplexe Zahlen
- Differentialgleichungen

#### Literatur:

• Klaus Weltner, Mathematik für Physiker 1 (Springer-Verlag), vor allem Kapitel 1, 2, 5-9

#### Zugeordnete Lehrveranstaltungen:

# Mathematische Ergänzungen I (Vorlesung + Übung)

Modulteil: Mathematische Ergänzungen II

Lehrformen: Vorlesung + Übung

Sprache: Deutsch

Angebotshäufigkeit: jedes Sommersemester

**SWS**: 2

# Inhalte:

Dieser Modulteil stellt in erster Linie die mathematischen Methoden bereit, die in der Elektrodynamik benötigt werden:

- · Linienintegrale
- Divergenz
- Oberflächenintegrale
- Satz von Gauß
- Rotation
- · Satz von Stokes

#### Literatur:

• Klaus Weltner, Mathematik für Physiker 2 (Springer-Verlag), vor allem Kapitel 13-18

# Prüfung

# Mathematische Ergänzungen

Klausur / Prüfungsdauer: 120 Minuten, unbenotet

# Beschreibung:

Die Klausur findet zum Ende des jeweiligen Sommersemesters statt, die Wiederholungsklausur zum Ende des darauf folgenden Wintersemesters. Die Anmeldung zur Klausur (über STUDIS) muss in dem Semester erfolgen, in dem die Prüfung abgelegt wird.

# Modul PHM-0003 (= GsHsPhy-02-EP): Physik II (Elektrodynamik, Optik)

8 ECTS/LP

Version 1.0.0 (seit WS09/10)

Modulverantwortliche/r: Prof. Dr. Achim Wixforth

#### Inhalte:

- 1. Elektrizitätslehre
- 2. Magnetismus
- 3. Elektrodynamik, Maxwell-Gleichungen
- 4. Elektromagnetische Wellen
- 5. Optik

#### Lernziele/Kompetenzen:

- Die Studierenden kennen die grundlegenden Begriffe, Konzepte und Phänomene der Elektrostatik und des Magnetismus; des weiteren die Grundbegriffe der Elektrodynamik sowie der elektromagnetischen Wellen und – daraus abgeleitet – der Optik,
- besitzen Fertigkeiten in der mathematischen Beschreibung elektromagnetischer Phänomene, Modellbildung, der Formulierung mathematisch-physikalischer Ansätze und können diese auf Aufgabenstellungen in den genannten Bereichen anwenden und
- besitzen Kompetenzen in der selbständigen Bearbeitung von Problemstellungen zu den genannten Themenbereichen. Sie sind in der Lage, Genauigkeiten von Beobachtung und Analyse einschätzen zu können.
- Integrierter Erwerb von Schlüsselqualifikationen: analytisch-methodische Kompetenz, wissenschaftliches Denken, Abwägen von Lösungsansätzen, Training des logischen Denkens, Teamfähigkeit, Erlernen des eigenständigen Arbeitens mit (englischsprachiger) Fachliteratur

#### Arbeitsaufwand:

Gesamt: 240 Std.

90 Std. Vorlesung und Übung (Präsenzstudium)

90 Std. Vor- und Nachbereitung des Stoffes Übung/Fallstudien (Selbststudium)

30 Std. Vor- und Nachbereitung des Stoffes anhand bereitgestellter Unterlagen (Selbststudium)

30 Std. Vor- und Nachbereitung des Stoffes durch Literatur (Selbststudium)

| Voraussetzungen:<br>Inhalte des Moduls Physik I |                                                |                                       |
|-------------------------------------------------|------------------------------------------------|---------------------------------------|
| Angebotshäufigkeit: jedes<br>Sommersemester     | Empfohlenes Fachsemester: 2.                   | Minimale Dauer des Moduls: 1 Semester |
| <b>SWS</b> : 6                                  | Wiederholbarkeit:<br>siehe PO des Studiengangs |                                       |

# Modulteile

Modulteil: Physik II (Elektrodynamik, Optik)

**Lehrformen:** Vorlesung **Sprache:** Deutsch

**SWS**: 4

#### Lernziele:

siehe Modulbeschreibung

#### Inhalte:

- 1. Elektrizitätslehre
  - Elektrische Wechselwirkung
  - · Elektrische Leitung

#### 2. Magnetismus

- · Magnetische Kraftwirkung auf bewegte Ladungen
- · Das Magnetfeld bewegter elektrischer Ladungen
- Magnetische Wechselwirkung zwischen bewegten Ladungen
- · Materie im statischen elektrischen und magnetischen Feld
- 3. Elektrodynamik, Maxwell-Gleichungen
  - · Elektromagnetische Induktion: Faraday-Henry-Satz
  - Ampere-Maxwell-Satz
  - · Maxwell-Gleichungen
- 4. Elektromagnetische Wellen
  - Grundlagen
  - · Das Huygens'sche Prinzip
  - · Reflexion und Brechung
  - · Beugung und Interferenz
  - Überlagerung mehrerer ebener Wellen
  - · Beugung am Gitter
  - · Wellenausbreitung in dispersiven Medien
  - · EM Wellen im Vakuum
  - EM Wellen in homogenen, isotropen, neutralen Medien
  - Reflexion und Brechung ebener harmonischer EM Wellen
  - · Entstehung und Erzeugung von EM Wellen

#### 5. Optik

- Spiegelung und Brechung
- · Abbildungseigenschaften und Abbildungsfehler
- · Optische Instrumente
- · Interferenz, Beugung und Holographie

# Literatur:

• Alonso-Finn: Fundamental University Physics II

Demtröder: ExperimentalphysikHalliday, Resnick & Walker: Physik

Tipler & Mosca: PhysikMeschede: Gerthsen Physik

Modulteil: Übung zu Physik II

**Lehrformen:** Übung **Sprache:** Deutsch

**SWS**: 2

#### Lernziele:

siehe Modulbeschreibung

#### Prüfung

# Physik II (Elektrodynamik, Optik)

Klausur / Prüfungsdauer: 150 Minuten

# Modul PHM-0010 (= GsHsPhy-04-Prak): Physikalisches Anfängerpraktikum (12 Versuche)

8 ECTS/LP

Version 1.0.0 (seit WS09/10)

Modulverantwortliche/r: Prof. Dr. Siegfried Horn

Dr. Matthias Klemm (Physikalisches Anfängerpraktikum), Dr. Aladin Ullrich (Grundpraktikum WING)

#### Inhalte:

Laborversuche aus den Bereichen Mechanik, Wärmelehre, Optik und Elektrizitätslehre

#### Lernziele/Kompetenzen:

- Die Studierenden kennen die theoretischen experimentellen Grundlagen der klassischen Physik, insbesondere in den Bereichen Mechanik, Wärmelehre, Elektrodynamik und Optik, und haben Grundkenntnisse der physikalischen Messtechnik.
- Sie sind in der Lage, sich mittels Literaturstudium in eine physikalische Fragestellung einzuarbeiten, ein vorgegebenes Experiment aufzubauen und durchzuführen, sowie die Ergebnisse dieser experimentellen Fragestellung mathematisch und physikalisch zu beschreiben,
- und besitzen die Kompetenz, ein experimentelles Ergebnis unter Einbeziehung einer realistischen Fehlerabschätzung und durch Vergleich mit Literaturdaten zu bewerten und einzuordnen.
- · Integrierter Erwerb von Schlüsselqualifikationen

#### Bemerkung:

Das Praktikum muss innerhalb von einem Semester abgeschlossen werden.

Jeder Student / Jede Studentin muss **12 Versuche** durchführen. Zu jedem Versuch ist innerhalb von 2 (Physikalisches Anfängerpraktikum) bzw. 3 (Grundpraktikum WING) Wochen ein Protokoll zu erstellen, in dem die physikalischen Grundlagen des Versuchs, der Versuchsaufbau, der Versuchsverlauf sowie die Ergebnisse und ihre Interpretation dokumentiert sind.

Die schriftliche Ausarbeitung eines Versuchs wird zu zwei Dritteln, die Durchführung vor Ort zu einem Drittel gewertet. Die Abschlussnote wird aus dem Mittelwert aller 12 Versuche errechnet. Weitere Informationen, insbesondere zur rechtzeitigen Anmeldung:

http://www.physik.uni-augsburg.de/exp2/lehre/

#### Arbeitsaufwand:

Gesamt: 240 Std.

90 Std. Praktikum (Präsenzstudium)

150 Std. Anfertigen von schriftlichen Arbeiten (Selbststudium)

| Voraussetzungen: Das Praktikum baut auf den Inhalten der Vorlesungen des 1. und 2. Fachsemesters auf. |                                                | ECTS/LP-Bedingungen: 12 mindestens mit "ausreichend" bewertete Versuchsprotokolle |
|-------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------|
| Angebotshäufigkeit: Beginn jedes<br>WS                                                                | Empfohlenes Fachsemester: 3.                   | Minimale Dauer des Moduls: 1 Semester                                             |
| <b>SWS</b> : 6                                                                                        | Wiederholbarkeit:<br>siehe PO des Studiengangs |                                                                                   |

#### Modulteile

Modulteil: Physikalisches Anfängerpraktikum (12 Versuche)

**Lehrformen:** Praktikum **Sprache:** Deutsch

**SWS**: 6

#### Lernziele:

siehe Modulbeschreibung

#### Inhalte:

- M1: Drehpendel
- M2: Dichte von Flüssigkeiten und Festkörpern
- M3: Maxwellsches Fallrad
- M4: Kundtsches Rohr
- M5: Gekoppelte Pendel
- M6: Oberflächenspannung und dynamische Viskosität
- M7: Windkanal
- M8: Richtungshören
- W1: Elektrisches Wärmeäquivalent
- W2: Siedepunkterhöhung
- W3: Kondensationswärme von Wasser
- W4: Spezifische Wärmekapazität von Wasser
- W5: Adiabatenexponent
- W6: Dampfdruckkurve von Wasser
- W7: Wärmepumpe
- W8: Sonnenkollektor
- W9: Thermoelektrische Effekte
- W10: Wärmeleitung
- O1: Brennweite von Linsen und Linsensystemen
- O2: Brechungsindex und Dispersion
- O3: Newtonsche Ringe
- O4: Abbildungsfehler von Linsen
- O5: Polarisation
- O6: Lichtbeugung
- O7: Optische Instrumente
- **08: Lambertsches Gesetz**
- O9: Stefan-Boltzmann-Gesetz
- E1: Phasenverschiebung im Wechselstromkreis
- E2: Messungen mit Elektronenstrahl-Oszillograph
- E3: Kennlinien von Elektronenröhren
- E4: Resonanz im Wechselstromkreis
- E5: EMK von Stromquellen
- E6: NTC- und PTC-Widerstand
- E8: NF-Verstärker
- E9: Äquipotential- und Feldlinien
- E10: Induktion

#### Literatur:

- W. Demtröder, Experimentalphysik 1-4 (Springer)
- D. Meschede, Gerthsen Physik (Springer)
- R. Weber, Physik I (Teubner)
- W. Walcher, Praktikum der Physik (Teubner)
- H. Westphal, Physikalisches Praktikum (Vieweg)
- W. Ilberg, D. Geschke, Physikalisches Praktikum (Teubner)
- Bergmann, Schäfer, Lehrbuch der Experimentalphysik 1-3 (de Gruyter)

# Zugeordnete Lehrveranstaltungen:

#### Grundpraktikum Physik \*\*\* WING B.Sc. \*\*\* (Praktikum)

Durchführung von physikalischen Praktikumsversuchen

Physikalisches Anfängerpraktikum (12 Versuche) -- Informatik, LA nicht vertieft (Praktikum)

Physikalisches Anfängerpraktikum (12 Versuche) -- MaWi !! (Praktikum)

# Modul PHM-0141 (= GsHsPhy-11-EP): Struktur der Materie I

8 ECTS/LP

Version 1.0.0

Modulverantwortliche/r: Prof. Dr.-Ing. Alois Loidl

#### Inhalte:

# **ATOMPHYSIK**

- Einführung, Entwicklung der Atomvorstellung, Entwicklung der Quantenphysik
- Grundlagen der Quantenmechanik
- Das Wasserstoff-Atom
- · Atome mit mehreren Elektronen
- · Wechselwirkung von Licht mit Materie

#### **KERNPHYSIK**

- · Aufbau der Atomkerne
- · Kernspaltung und Kernfusion
- · Instabile Kerne, Radioaktivität, Kernreaktionen
- · Elementarteilchen und Standardmodell
- · Aufbau der Nukleonen

# Lernziele/Kompetenzen:

Die Studierenden

- kennen den Aufbau der Atome; sie verstehen den unterschiedlichen Charakter der klassischen Physik und der Quantenphysik, sind mit den grundlegenden Eigenschaften von Atomen und Molekülen vertraut,
- kennen den Aufbau der Atomkerne, die Grundlagen der Radioaktivität und der Kernkraft; sie sind mit den Grundzügen des Standardmodells vertraut,
- und besitzen die Kompetenz, Problemstellungen in den genannten Bereichen selbständig zu bearbeiten.

#### Arbeitsaufwand:

Gesamt: 240 Std.

| Voraussetzungen: Keine formalen, jedoch sind gute Kenntnisse der Inhalte der Module Physik I und II sowie der Grundlagen der Mathematik empfehlenswert |                                                | ECTS/LP-Bedingungen:<br>Bestehen der Modulprüfung |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------|
| Angebotshäufigkeit: jedes<br>Wintersemester                                                                                                            | Empfohlenes Fachsemester: 3.                   | Minimale Dauer des Moduls: 1 Semester             |
| <b>SWS</b> : 6                                                                                                                                         | Wiederholbarkeit:<br>siehe PO des Studiengangs |                                                   |

#### Modulteile

Modulteil: Struktur der Materie I

**Lehrformen:** Vorlesung **Sprache:** Deutsch

SWS: 4

#### Inhalte:

siehe Modulbeschreibung

#### Literatur:

- Demtröder: Experimentalphysik III (Springer)
- · Graewe: Atom- und Kernphysik (Oldenbourg)
- Mayer-Kuckuk: Atomphysik (Teubner)
- · Haken, Wolf: Molekülphysik und Quantenmechanik (Springer)
- Bethge: Kernphysik (Springer)

# Zugeordnete Lehrveranstaltungen:

Struktur der Materie I (Vorlesung + Übung)

Modulteil: Übung zu Struktur der Materie I

**Lehrformen:** Übung **Sprache:** Deutsch

**SWS**: 2

Zugeordnete Lehrveranstaltungen:

Struktur der Materie I (Vorlesung + Übung)

# Prüfung

# Struktur der Materie I

Klausur / Prüfungsdauer: 120 Minuten

# Modul PHM-0142 (= GsHsPhy-12-EP): Struktur der Materie II

8 ECTS/LP

Version 1.0.0

Modulverantwortliche/r: Prof. Dr.-Ing. Alois Loidl

#### Inhalte:

# **FESTKÖRPERPHYSIK**

- Kristallgitter
- · Gitterdynamik
- · Elektronen im Festkörper
- Halbleiter
- Dielektrika (optische Eigenschaften)
- · Magnetismus
- Supraleitung

# MOLEKÜLPHYSIK

- · Bindungskräfte
- Anregungen

# Lernziele/Kompetenzen:

Die Studierenden

- kennen Konzepte, Phänomenologie und grundlegende experimentelle Methoden zur Erforschung kondensierter Materie.
- haben die Fähigkeit erworben, grundlegende Probleme der Physik der kondensierten Materie zu verstehen,
- und besitzen die Kompetenz, übergreifende Problemstellungen in den genannten Bereichen selbständig zu bearbeiten. Dies umfasst insbesondere die kritische Analyse der Messergebnisse und einfache Interpretationen im Lichte aktueller Konzepte.

#### Arbeitsaufwand:

Gesamt: 240 Std.

| Voraussetzungen: Keine formalen, jedoch sind gute Kenntnisse der Inhalte der Module Physik I und II, der Grundlagen der Mathematik sowie des Moduls Struktur der Materie I empfehlenswert |                                                | ECTS/LP-Bedingungen: Bestehen der Modulprüfung |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|
| Angebotshäufigkeit: jedes<br>Sommersemester                                                                                                                                               | Empfohlenes Fachsemester: 4.                   | Minimale Dauer des Moduls: 1 Semester          |
| <b>sws</b> : 6                                                                                                                                                                            | Wiederholbarkeit:<br>siehe PO des Studiengangs |                                                |

#### Modulteile

Modulteil: Struktur der Materie II

**Lehrformen:** Vorlesung **Sprache:** Deutsch

**SWS**: 4

Inhalte:

siehe Modulbeschreibung

# Literatur:

- Demtröder: Experimentalphysik III (Springer)
- Graewe: Atom- und Kernphysik (Oldenbourg)
- Mayer-Kuckuk: Atomphysik (Teubner)
- Haken, Wolf: Molekülphysik und Quantenmechanik (Springer)
- Bethge: Kernphysik (Springer)

Modulteil: Übung zu Struktur der Materie II

Lehrformen: Übung Sprache: Deutsch

**SWS**: 2

# Prüfung

# Struktur der Materie II

Klausur / Prüfungsdauer: 120 Minuten

Modul DNW-7055 (= GsHsPhy-13-EP): Schulphysik für Lehramt an Mittelschulen (Unterrichtsfach) (= Schulphysik I + II)

6 ECTS/LP

Version 1.0.0 (seit WS12/13)

Modulverantwortliche/r: Dr. Franz-Josef Heiszler

Priv.-Doz. Dr. Norbert Büttgen

#### Inhalte:

Überblick über die Sachstruktur der unterrichtsrelevanten Themenkreise der Physik

# Lernziele/Kompetenzen:

Die Studierenden erwerben

- die Fähigkeit zur didaktischen Reduktion der Fachinhalte auf schulartspezifisches Niveau
- Fertigkeiten im Bearbeiten von schülergerechten Übungsaufgaben
- Kompetenzen zur Verknüpfung fachdidaktischer und fachwissenschaftlicher Aspekte

# Arbeitsaufwand:

Gesamt: 180 Std.

| Voraussetzungen: Basiskompetenzen in Physik            |                               | ECTS/LP-Bedingungen: Bestehen der Modulprüfung |
|--------------------------------------------------------|-------------------------------|------------------------------------------------|
| Angebotshäufigkeit: jährlich ,<br>Reihenfolge beliebig | Empfohlenes Fachsemester: 5.  | Minimale Dauer des Moduls:<br>2 Semester       |
| <b>sws</b> : 6                                         | Wiederholbarkeit:<br>beliebig |                                                |

#### Modulteile

Modulteil: Schulphysik I Lehrformen: Vorlesung Sprache: Deutsch

Angebotshäufigkeit: jedes Wintersemester

**SWS**: 3

#### Lernziele:

Die Studierenden erwerben

- die Fähigkeit zur didaktischen Reduktion der Fachinhalte auf schulartspezifisches Niveau
- Fertigkeiten im Bearbeiten von schülergerechten Übungsaufgaben
- Kompetenzen zur Verknüpfung fachdidaktischer und fachwissenschaftlicher Aspekte

#### Inhalte:

Themen:

Mechanik: Masse, Kraft, Kraftwirkung

Bewegung

Energie

Thermodynamik: Temperatur, Wärme

Phasenübergänge

Gase Hydraulik Akustik

Wärmekraftmaschinen

Atom- und Kernphysik: Atommodelle, Atomare Kräfte und Radioaktivität

#### Literatur:

siehe Vorlesungsunterlagen

# Zugeordnete Lehrveranstaltungen:

# Schulphysik I (Vorlesung)

Modulteil: Schulphysik II Lehrformen: Vorlesung Sprache: Deutsch

Angebotshäufigkeit: jedes Sommersemester

**SWS**: 3

#### Lernziele:

Die Studierenden erwerben

- die Fähigkeit zur didaktischen Reduktion der Fachinhalte auf schulartspezifisches Niveau
- Fertigkeiten im Bearbeiten von schülergerechten Übungsaufgaben
- Kompetenzen zur Verknüpfung fachdidaktischer und fachwissenschaftlicher Aspekte

#### Inhalte:

Themen:

Optik: Grundlagen der geometrischen Optik, Spiegelung und Brechung, Linsen und optische Geräte

Elektrik: Ladungen, Spannung, Widerstände und Schaltungen

Magnetismus, Elektromagnetismus

Elektromotorische Kraft

Induktion Elektronik

Astronomie: Himmelsbeobachtung, Sternmodelle, Sonnenenergie

#### Literatur:

siehe Vorlesungsunterlagen

# Prüfung

# Modulgesamtprüfung

Hausarbeit/Seminararbeit / Bearbeitungsfrist: 1 Wochen, unbenotet

# Beschreibung:

Die Bearbeitung der Übungsblätter wird bewertet; für das Bestehen des Moduls sind ausreichende Bewertungen aus beiden Lehrveranstaltungen notwendig.

Die Anmeldung zur Prüfung bei Studis muss in dem Semester erfolgen, in dem die Modulgesamtprüfung abgelegt wird.